Duality and Self-Duality (Energy Reflection Symmetry) of Quasi-Exactly Solvable Periodic Potentials
نویسنده
چکیده
A class of spectral problems with a hidden Lie-algebraic structure is considered. We define a duality transformation which maps the spectrum of one quasi-exactly solvable (QES) periodic potential to that of another QES periodic potential. The self-dual point of this transformation corresponds to the energy-reflection symmetry found previously for certain QES systems. The duality transformation interchanges bands at the bottom (top) of the spectrum of one potential with gaps at the top (bottom) of the spectrum of the other, dual, potential. Thus, the duality transformation provides an exact mapping between the weak coupling (perturbative) and semiclassical (nonperturbative) sectors.
منابع مشابه
On the Duality of Quasi-Exactly Solvable Problems
It is demonstrated that quasi-exactly solvable models of quantum mechanics admit an interesting duality transformation which changes the form of their potentials and inverts the sign of all the exactly calculable energy levels. This transformation helps one to reveal some new features of quasi-exactly solvable models and associated orthogonal polynomials. [email protected] [email protected]...
متن کاملNew Solvable and Quasi Exactly Solvable Periodic Potentials
Using the formalism of supersymmetric quantum mechanics, we obtain a large number of new analytically solvable one-dimensional periodic potentials and study their properties. More specifically, the supersymmetric partners of the Lamé potentials ma(a+ 1) sn(x,m) are computed for integer values a = 1, 2, 3, .... For all cases (except a = 1), we show that the partner potential is distinctly differ...
متن کاملar X iv : s ol v - in t / 9 90 20 09 v 1 1 2 Fe b 19 99 A Critical Ising Model on the Labyrinth
A zero-field Ising model with ferromagnetic coupling constants on the so-called Labyrinth tiling is investigated. Alternatively, this can be regarded as an Ising model on a square lattice with a quasi-periodic distribution of up to eight different coupling constants. The duality transformation on this tiling is considered and the self-dual couplings are determined. Furthermore, we analyze the s...
متن کاملMatching Weak Coupling and Quasiclassical Expansions for Dual Qes Problems
Certain quasi-exactly solvable systems exhibit an energy reflection property that relates the energy levels of a potential or of a pair of potentials. We investigate two sister potentials and show the existence of this energy reflection relationship between the two potentials. We establish a relationship between the lowest energy edge in the first potential using the weak coupling expansion and...
متن کاملU-duality from Matrix Membrane Partition Function
We analyse supermembrane instantons (fully wrapped supermembranes) by computing the partition function of the three-dimensional supersymmetrical U(N) matrix model under periodic boundary conditions. By mapping the model to a cohomological field theory and considering a mass-deformation of the model, we show that the partition function exactly leads to the U-duality invariant measure factor ente...
متن کامل